
Online
seminar

Audience
Companies and engineers interested in debugging, profiling and tracing
Linux systems and applications, to analyze and address performance or
latency problems.

Training objectives
• Be able to understand the main concepts of Linux that are relevant for perfor-

mance analysis: process, threads, memory management, virtual memory, execution
contexts, etc.

• Be able to analyze why a system is loaded and what are the elements that contributes
to this load using common Linux observability tools.

• Be able to debug an userspace application using gdb, either live or after a crash,
and analyze the contents of ELF binaries.

• Be able to trace and profile a complete userspace application and its interactions
with the Linux kernel in order to fix bugs using strace, ltrace, perf or Callgrind.

• Be able to understand classical memory issues and analyze them using valgrind,
libefence or Massif.

• Be able to trace and profile the entire Linux system, using perf, ftrace, kprobes,
eBPF tools, kernelshark or LTTng

• Be able to debug Linux kernel issues: debug kernel crashes live or post-mortem,
analyze memory issues at the kernel level, analyze locking issues, use kernel-level
debuggers.

Prerequisites
• Knowledge and practice of UNIX or GNU/Linux commands: participants must

be familiar with the Linux command line. Participants lacking experience on this
topic should get trained by themselves, for example with our freely available on-line
slides.

• Minimal experience in embedded Linux development: participants should have
a minimal understanding of the architecture of embedded Linux systems: role of
the Linux kernel vs. user-space, development of Linux user-space applications in C.
Following Bootlin’s Embedded Linux course allows to fulfill this pre-requisite.

• Minimal English language level: B1, according to the Common European Frame-
work of References for Languages, for our sessions in English. See the CEFR grid
for self-evaluation.

Pedagogics
• Lectures delivered by the trainer, over video-conference. Participants can ask ques-

tions at any time.
• Practical demonstrations done by the trainer, based on practical labs, over video-

conference. Participants can ask questions at any time. Optionally, participants
who have access to the hardware accessories can reproduce the practical labs by
themselves.

• Instant messaging for questions between sessions (replies under 24h, outside of
week-ends and bank holidays).

• Electronic copies of presentations, lab instructions and data files. They are freely
available here.

Certificate
Only the participants who have attended all training sessions, and who have scored over
50% of correct answers at the final evaluation will receive a training certificate from
Bootlin.

Disabilities
Participants with disabilities who have special needs are invited to contact us at train-
ing@bootlin.com to discuss adaptations to the training course.

1

Linux debugging,
profiling, tracing and
performance analysis

training

Course duration
U 4 half days – 16 hours

Language

Materials English

Oral Lecture English
French
Italian

Trainer
One of the following engineers

• Alexis Lothoré
• Luca Ceresoli

Contact
@ training@bootlin.com
T +33 484 258 097

bootlin.com

https://bootlin.com/blog/command-line/
https://bootlin.com/blog/command-line/
https://bootlin.com/training/embedded-linux/
https://bootlin.com/pub/training/cefr-grid.pdf
https://bootlin.com/doc/training/debugging
mailto:training@bootlin.com
mailto:training@bootlin.com
https://bootlin.com/company/staff/alexis-lothore/
https://bootlin.com/company/staff/luca-ceresoli/
mailto:training@bootlin.com
https://bootlin.com


Required equipement
Mandatory equipment:

• Computer with the operating system of your choice, with the Google Chrome or Chromium browser for videoconferencing.
• Webcam and microphone (preferably from an audio headset).
• High speed access to the Internet.

Optionnally, if the participants want to be able to reproduce the practical labs by themselves, they must separately purchase the
hardware platform and accessories, and must have a PC computer with a native installation of Ubuntu Linux 24.04.

Hardware platform for practical labs

STM32MP1 Discovery Kit
One of these Discovery Kits from STMi-
croelectronics: STM32MP157A-DK1,
STM32MP157D-DK1, STM32MP157C-
DK2 or STM32MP157F-DK2

• STM32MP157, dual Cortex-A7 processor
from STMicroelectronics

• USB powered
• 512 MB DDR3L RAM
• Gigabit Ethernet port
• 4 USB 2.0 host ports
• 1 USB-C OTG port
• 1 Micro SD slot
• On-board ST-LINK/V2-1 debugger
• Arduino compatible headers
• Audio codec, buttons, LEDs
• LCD touchscreen (DK2 kits only)

2



Training Schedule

Half day 1
Lecture Linux application stack • Global picture: understanding the general architecture of a Linux sys-

tem, overview of the major components.
• What is the difference between a process and a thread, how applica-

tions run concurrently.
• ELF files and associated analysis tools.
• Userspace application memory layout (heap, stack, shared libraries

mappings, etc).
• MMU and memory management: physical/virtual address spaces.
• Kernel context switching and scheduling
• Kernel execution contexts: kernel threads, workqueues, interrupt,

threaded interrupts, softirq

Lecture Common analysis & observability
tools

• Analyzing an ELF file with GNU binary utilities (objdump, addr2line).
• Tools to monitor a Linux system: processes, memory usage and map-

ping, resources.
• Using vmstat, iostat, ps, top, iotop, free and understanding the met-

rics they provide.
• Pseudo filesystems: procfs, sysfs and debugfs.

Demo Check what is running on a system
and its load

• Observe running processes using ps and top.
• Check memory allocation and mapping with procfs and pmap.
• Monitor other resources usage using iostat, vmstat and netstat.

Lecture Debugging an application • Using gdb on a live process.
• Understanding compiler optimizations impact on debuggability.
• Postmortem diagnostic using core files.
• Remote debugging with gdbserver.
• Extending gdb capabilities using python scripting

Half day 2
Demo Solving an application crash • Analysis of compiled C code with compiler-explorer to understand

optimizations.
• Managing gdb from the command line, then from an IDE.
• Using gdb Python scripting capabilities.
• Debugging a crashed application using a coredump with gdb.

Lecture Tracing an application • Tracing system calls with strace.
• Tracing library calls with ltrace.
• Overloading library functions using LD_PRELOAD.

Demo Debugging application issues • Analyze dynamic library calls from an application using ltrace.
• Overloading library functions using LD_PRELOAD.
• Analyzing an application system calls using strace.

Lecture Memory issues • Usual memory issues: buffer overflow, segmentation fault, memory
leaks, heap-stack collision.

• Memory corruption tooling, valgrind, libefence, etc.
• Heap profiling using Massif and heaptrack

Demo Debugging memory issues • Memory leak and misbehavior detection with valgrind and vgdb.
• Visualizing application heap using Massif.

Half day 3

3



Lecture Application profiling • Performances issues.
• Gathering profiling data with perf.
• Analyzing an application callgraph using Callgrind and KCachegrind.
• Interpreting the data recorded by perf.

Demo Application profiling • Profiling an application with Callgrind/KCachegrind.
• Analyzing application performance with perf.
• Generating a flamegraph using FlameGraph.

Lecture System wide profiling and tracing • System wide profiling using perf.
• Using kprobes to hook on kernel code without recompiling.
• Application and kernel tracing and visualization using ftrace, ker-

nelshark or LTTng
• Tracing with eBPF: core principles, usage with BCC and with libbpf

Demo System wide profiling and tracing • System profiling with perf.
• System wide latencies debugging using ftrace and kernelshark.

Half day 4
Demo Tracing tool with eBPF • Python scripting with bcc.

• Custom tool development with libbpf.

Lecture Kernel debugging • Kernel compilation results (vmlinux, System.map).
• Understanding and configuring kernel oops behavior.
• Post mortem analysis using kernel crash dump with crash.
• Memory issues (KASAN, UBSAN, Kmemleak).
• Debugging the kernel using KGDB and KDB.
• Kernel locking debug configuration options (lockdep).
• Other kernel configuration options that are useful for debug.

Demo Kernel debugging • Analyzing an oops after using a faulty module with obdjump and
addr2line.

• Debugging a deadlock problem using PROVE_LOCKING options.
• Detecting undefined behavior with UBSAN in kernel code.
• Find a module memory leak using kmemleak.
• Debugging a module with KGDB.

4


